

VK162-12 Technical Manual

Revision: 1.0

Contents

C	ntent		11						
1	Intr	duction	1						
	1.1	What to Expect From the VK162-12	1						
	1.2	What Not to Expect From the VK162-12	1						
	1.3	Keypad Interface	1						
		1.4 Setup for Testing							
			2						
	1.6	Trying out a Keypad	3						
	1.0	1.6.1 Here's what to do:	3						
	1.7	Manual Over-ride	3						
	1.8	Memory Chip Lock Down	4						
	1.0	Without Chip Lock Down	7						
2	Con	nections	5						
	2.1	Connector Pinout	5						
		2.1.1 Power Connection	6						
		2.1.2 Five Volt Modules	6						
		2.1.3 Wide Voltage Range Modules	7						
		2.1.4 Power through the DB-9 Connector	8						
		2.1.5 RS-232 Communications	8						
		2.1.6 DB9 Connection	8						
		2.1.7 Alternate Serial Connection	9						
			10						
		2	10						
			10						
	2.2		12						
	2.2	Concruir urpose outputs	_						
3	Disp	• 6	13						
	3.1		13						
	3.2		13						
	3.3		14						
	3.4	Text Commands	15						
			15						
		3.4.2 Auto Line Wrap Off (254 68) (R)	15						
		3.4.3 Auto Scroll On (254 81) (R)	15						
		3.4.4 Auto Scroll Off (254 82) (R)	15						
			15						
		3.4.6 Send Cursor Home (254 72)	15						
			16						
			16						
			16						
			16						
			16						
			16						
		5.112 Cursor right (25+11)	· O						

4	Key]	pad Inte	erface	16
	4.1	Genera	1	17
	4.2		ctions	
	4.3	I ² C Int	erface	18
	4.4	RS-232	2 Interface	18
	4.5	Keypac	d Commands	18
		4.5.1	Auto Repeat Mode On (254 126 [mode]) (R)	19
		4.5.2	Auto Repeat Mode Off (254 96) (R)	19
		4.5.3	Auto Transmit Keypresses On (254 65) (R)	19
		4.5.4	Auto Transmit Keypresses Off (254 79) (R)	20
		4.5.5	Clear Key Buffer (254 69)	20
		4.5.6	Poll Keypad (254 38)	20
		4.5.7	Set Debounce Time (254 85 [time]) (R)	20
5			and Special Characters	20
	5.1		and List	
		5.1.1	Initialize Wide Vertical Bar Graph (254 118)	
		5.1.2	Initialize Narrow Vertical Bar Graph (154 115)	
		5.1.3	Draw Vertical Bar Graph (254 61 [column] [height])	
		5.1.4	Initialize Horizontal Bar Graph (254 104)	
		5.1.5	Draw Horizontal Bar Graph (254 124 [column] [row] [dir] [length])	21
		5.1.6	Define Custom Character (254 78 [c] [8 bytes])	22
6	Misc	rellaneo	us Commands	23
U	6.1		and List	
	0.1	6.1.1	Remember	
		6.1.2	Clear Display (254 88)	
		6.1.3	Display On (254 66 [minutes]) (R)	
		6.1.4	Display Off (254 70)	
		6.1.5	Load Startup Screen (254 64 [32 characters])	
		6.1.6	Set brightness (254 89 [brightness])	
		6.1.7	General Purpose Output Off (254 86 [gpo #])	
		6.1.8	General Purpose Output On (254 87 [gpo #])	
		6.1.9	Set I ² C Address 254 51 [address])	
			Read Module Type (254 55)	26
			Set RS-232 Port Speed (254 57 [speed])	26
			Read Version Number 254 54)	27
			Read Serial Number (254 53)	27
			Read Version Number (254 54)	
	6.2			27
	0.2	Flow C		27
		6.2.1	Enter Flow Control Mode (254 58 [full][empty])	27
		6.2.2	Exit Flow Control Mode (254 59)	28
		6.2.3	GPO or Keypad Mode (254 126 [mode])	28

7	App	endix: Command Summary	28
	7.1	General	28
	7.2	Issuing Commands	28
	7.3	On Numbers	29
		7.3.1 ASCII Characters	29
	7.4	Text Commands	30
	7.5	Keypad Interface Commands	32
	7.6	Bar Graphs and Special Characters	33
	7.7	Miscellaneous Commands	33
8	App	endix: Specifications and Options	35
	8.1	Specifications	35
		Options	
9	App	endix: Glossary	38

1 Introduction

The VK162-12 comes equipped with the following features;

- 16 column by 2 line text display
- Built in font with provision for up to 8 user defined characters
- Speeds from 1200 bps to a lighting fast 19.2 Kbps over RS-232
- Communication over I²C or RS-232 (with software controlled speed)
- Use of up to 127 modules on the same 2-wire I²C interface
- Fully buffered so that no delays in transmission are ever necessary
- Ability to add a customized splash / start-up screen
- Use of Matrix Orbital's "Remember" functions to save settings
- Software controlled contrast
- Backlight with configurable time out setting up to 180 minutes
- Use of up to a 12 key keypad with a 10 key buffer
- Seven general purpose outputs for a variety of applications
- Horizontal or vertical bar graphs
- Variable power options, +5V or +9V to +15V
- Extended temperature option

1.1 What to Expect From the VK162-12

The VK162-12 is designed as the display unit for an associated controller. The controller may be anything from a single board, special purpose micro-controller to a PC, depending on the application. This controller is responsible for what is displayed on the screen of the display. The display provides a simple command structure to allow text and bar graphs to be displayed on the screen. Text fonts are built in and use standard ASCII mapping. Provision is made for up to 8 user defined characters. The screen is backlit for low light situations. Backlighting may be turned on or off under program control. Contrast is adjustable to compensate for differing lighting conditions and viewing angles. General purpose outputs allow the controller to switch up to seven electronic or electro-mechanical devices by issuing commands to the display unit. These can be used for controlling LEDs, relays, etc.

1.2 What Not to Expect From the VK162-12

The display does not include bitmap graphics capability, except that permitted by defining special characters.

1.3 Keypad Interface

The keypad interface takes row / column input and converts it to ASCII characters, which are delivered out the RS-232 or I²C port to the associated controller. Please note that the keypad is not used to directly control any aspect of the operation of the display, which acts simply as a matrix to serial converter. To use the keypad to control the display the controller must be programmed accordingly.

1.4 Setup for Testing

Before setting up the application the user may want to try out the display. This is easily done with a PC. If not equipped with a dual bay PC mounting kit, the following will be required;

- A 4-pin power connector of the type used to connect 3.5" floppy drive. Take care not to connect the display to an unmodified spare power connector in a PC
- A 5 V power supply
- A PC with a spare RS-232 port (COM1 or COM2)
- A 9 or 25 pin RS-232 serial cable. If using a 25 conductor cable, a 9 to 25 pin adapter will be required

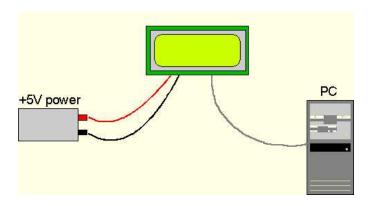


Figure 1: Connections for Testing

- 1. Refer to the Figure above for the following steps.
- 2. Wire the connector to the power supply. On most connectors the RED lead will go to +5V and the BLACK lead to GND.

NOTE The Manufacturer's Warranty becomes void if the unit is subjected to over-voltage or reversed polarity.

3. Connect the display to the PC using the serial cable and adapter if required.

NOTE Make certain the RS-232 cable includes the required ground lead. There must be no voltage differential between the RS-232 ground and the power supply ground.

4. Connect the power connector, making sure that the +5V goes to V+. Turn on the power: the display backlight should come on.

1.5 Trying Out the VK162-12

The unit should be connected to power and the PC and backlight should be on.

To experiment with typing text, run a PC terminal program such as Hyperterm.

Make sure it's configured to use the correct port. Set the baud rate to 19,200.

If characters are typed on the keyboard, they should now appear on the display screen. Text will wrap around to the next line when the end of a line has been reached.

1.6 Trying out a Keypad

Since a number of different keypad types can be connected to the display, the results may be a little unpredictable. At this point all we need to do is make sure that the keypad and interface work, and possibly generate an ASCII map for any programming needs. The keypad interface on the display converts a row / column connection to an ASCII character. By default, a keypress is transmitted as serial data immediately. Keypad buffering can be selected using the appropriate commands.

1.6.1 Here's what to do:

- 1. The PC should be running a terminal program, such as Hyperterm, as in the previous section.
- 2. With the display connected to the PC, plug the keypad in. If the connector has fewer pins than the one on the display, center it as well as possible.

NOTES

- The keypad connector must be wired with columns on one side and rows on the other side of the center of the connector. If the keypad isn't wired this way an adapter must be made or the connector must be rewired to meet this requirement.
- The connector is reversible. Reversing the connector will not damage the keypad or the display, but will however, change the ASCII character map.
- 3. Press a key on the keypad. An upper case ASCII character (A-Y) should appear on the PC screen. Different keys should generate different characters.

To experiment, reverse the connector and see if it generates a more logical set of characters. Ultimately, the program in the micro-controller will have to 'map' these characters to the ones marked on the keypad, which will likely be different.

1.7 Manual Over-ride

Manual over-ride should only be required in one instance. If for some reason the module is set at a baud rate which cannot be produced by the host system and all communication to the display is lost, then the user should follow this simple procedure;

- 1. Turn off the display
- 2. Put a jumper on pins 3 and 4 of the keypad connector (R3 and C1)
- 3. Power up the display. The baud rate is now set to 19,200
- 4. Remove the jumper and change the RS-232 port settings to the desired baud rate
- 5. Turn off the display
- 6. Power up the display

Refer to the "Set RS-232 port speed" command for acceptable baud rates.

Figure 2: Manual Over-ride

Place jumper on the above pins.

1.8 Memory Chip Lock Down

The display uses a memory chip to store speed, start up screen contrast, I^2C setting and other settings. When everything has been changed to the desired settings and the unit is in a finished product or in the field, locking down the memory chip so no settings can be changed might be desirable. This is only to be done by knowledgeable people. Any damage to the display by this procedure resulting from user error will not be covered under the Manufacturer's Warranty.

Figure 3: Unlocked & Locked

Table 2: Mating Connectors

14 Pin Dual Header	Many, ex. MOLEX 70058
4 Pin	MOLEX 7880
DB-9F	

To lock down the memory chip, solder the jumper as shown in the LOCKED picture above. This will lock down the memory chip, not allowing anything to be changed inside it until the jumpers are restored to their original position.

2 Connections

2.1 Connector Pinout

Refer to the Figure below for this chapter.

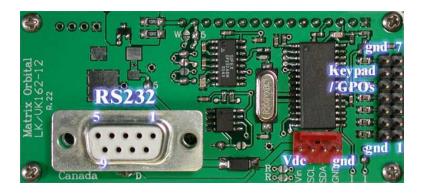


Figure 4: Electrical Connections

The display has four connectors;

Table 1: Connectors & Functions

Connector	Function
14 Pin Dual Header	General purpose outputs or Keypad (2x7)
4 Pin	Power (Vdc) and I ² C communications
DB-9F	RS-232 / Power

2.1.1 Power Connection

Power is applied via pins 1 and 4. Power requirement for standard units is +5 VDC ± 0.25 V (units with the wide voltage range option require 7 - 15 Vdc). Power may also be supplied via the RS-232 connector.

WARNINGS

- Do not apply any power with reversed polarization.
- Do not apply any voltage other than the specified voltage.
- Do not use any cables other than the cables supplied by Matrix Orbital, unless aware of the modifications required.
- Do not apply power to the DB-9 connector AND the power connector. Do not apply more than +5Vdc to pin 9 on the DB-9 connector.

2.1.2 Five Volt Modules

If the display is used in a PC it becomes tempting to plug a spare power connector into the unit. **Don't do this!** Wiring for the PC power connector and that required for the display are different.

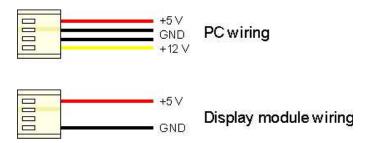


Figure 5: Wiring for 5V Modules

Matrix Orbital can supply an adapter cable designed for use with the display when it's installed in a PC. Note that the cable below does not provide connections for I²C.

Figure 6: Five Volt Power Cable

2.1.3 Wide Voltage Range Modules

NOTE Do not use this cable unless the display module has the "Wide voltage range" option (option V). Use of the 12 volt power cable with 5 volt modules will damage the module.

The 12 volt power cable is designed for use with wide voltage range display modules mounted in a PC. Wiring required for the 12 volt power connector is shown in the Figure below.

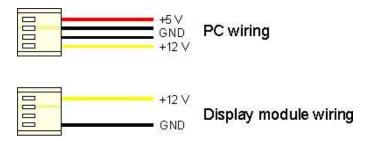


Figure 7: Wiring for 12 Volt Modules

Matrix Orbital can supply an adapter cable designed for use with the display module when it's installed in a PC. The cable is wired as shown in the Figure below.

Figure 8: Twelve Volt Power Cable

2.1.4 Power through the DB-9 Connector

The display can be powered by pin 9 on the DB-9 connector. If power is applied here, power cannot be applied to the other power connector. The input voltage for pin 9 can only be +5Vdc, even if the unit is wide voltage.

NOTE Failure to follow these instructions will result in the destruction of the unit.

The jumper shown in the Figure below will have to soldered to use the DB-9 connector for power.

Figure 9: DB-9 Power

2.1.5 RS-232 Communications

The RS-232 connector on the PC cable is wired so that a standard 'straight through' 9 pin D-sub cable may be used to connect the module to a standard serial port such as COM ports on PCs. Note that this device complies with the EIA232 standard in that it uses signal levels from \pm 12V to \pm 12V and can be converted to TTL levels as well. The display is set at 19.2Kbps default speed. Other settings are;

8 bits, no parity, 1 stop bit.

2.1.6 DB9 Connection

A standard DB-9F is provided for RS-232 communications. Power may also be supplied via this connector if desired.

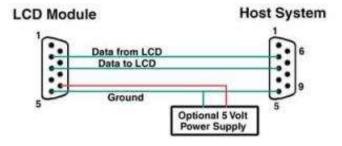


Figure 10: RS-232 and Power Connector

Table 3: RS-232 Pinout

Pin Number	Direction	Description	LCD	Host
2	Data from LCD	Data out(LCD)	Tx	Rx
3	Data to LCD	Data in (LCD)	Rx	Tx
5	-	Ground	gnd	gnd

2.1.7 Alternate Serial Connection

An optional alternate connection header is provided to allow one cable for data and power. Two jumpers will have to be soldered and two removed.

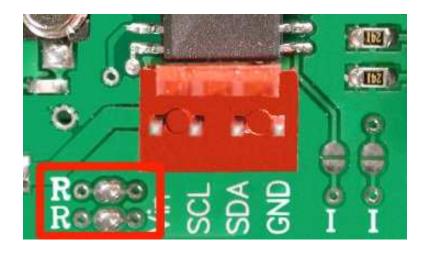


Figure 11: RS-232 SIPs

Connector pinout is as follows;

Figure 12: Power Connector

Table 4: Connector Pinout

Pin 4	Ground
Pin 3	Rx
Pin 2	Tx
Pin 1	Vdc

2.1.8 TTL Communications

The display can be talked to at TTL (logic 0V to +5V) levels. Two modifications must be made.

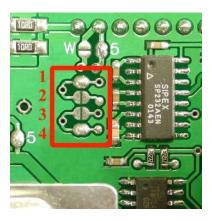


Figure 13: RS-232 Selects

Jumpers 2 and 3 must be closed and 1 and 4 open.

2.1.9 I²C Communications

 I^2C communications runs at 100Kbps and supports up to 127 units on a single communications line. The I^2C data line operates on 5 volt CMOS levels.

2.1.10 ACK

The idea of ACK is to indicate when the data has been received correctly. ACK does not indicate data incorrectly received. ACK simply fails to indicate when data is correctly received. Clearly, this is of limited usefulness and even less so with Matrix Orbital modules. Matrix orbital modules are not capable of failing to acknowledge an incorrectly received byte in response to that byte's transition. They are only capable of failing to acknowledge the bytes following the byte, which was not received. To fully understand the reasons

for this, one needs to understand how a Matrix Orbital module processes data. Basically, the reason why a Matrix Orbital module might fail to receive a byte correctly is that it was unable to process the byte previous before the failed byte was transmitted. Because the module cannot possibly know that it would be unable to store the byte before the next byte was received it cannot know to not ACK. The reason for this situation in deference to situations one might be familiar with (i.e., memory chips, etc) is that the Matrix Orbital module employs a micro-processor to perform these data storage functions. A memory chip takes care of these things entirely within hardware subsystems which operate at the same speed as the transmission themselves.

The display uses a standard Phillips 7bit address as defined by Phillips. However, Matrix Orbital specifies I^2C address in 8bits. The 8th bit, least significant bit, LSB or Low Order Bit of the 8bit address is a read / write bit. If we take a standard Phillips 7bit address of 45hex this would be in binary 1000101. This is 7bits. Matrix Orbital would describe the Phillips I^2C address of 45hex as 8Ahex. The read address would be 8Bhex.

For more information on Phillips I²C please visit;

http://www.ping.be/~ping0751/i2cfaq/i2cindex.htm

and for more information specific to our displays visit;

http://www.lcdforums.com/forums/viewtopic.phpt=910

To communicate by I^2C two jumpers have to be set into the I^2C position left of the power SIP connector. The I^2C setting is default on the display.

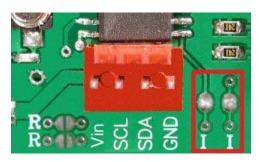


Figure 14: RS-232 SIPs

Connector pinout is as follows;

Figure 15: Power Connector

Table 5: Connector Pinout

Pin 4	Ground
Pin 3	SDA (I ² C data)
Pin 2	SCL (I ² C clock)
Pin 1	Vdc

2.2 General Purpose Outputs

The display has seven general purpose outputs. These are provided to control relays or other electronic devices. This allows external devices to be turned on or off using the PC or controller and software commands. The + terminal is connected directly to the module positive supply, the - terminal is connected through a 240ohm current limiting resistor and the electronic switch to ground.

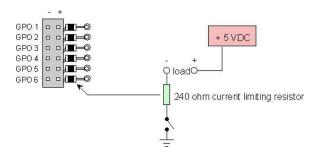


Figure 16: General Purpose Outputs

Maximum allowable current is 20mA, which is enforced by the current limiting resistor. If the device being switched has a resistance of 240ohms or more the corresponding resistor may be shorted.

NOTE The GPOs do not have any over current or over / under voltage protection so care must be taken when using them. For instance if the external device is a relay it must be fully clamped using a diode and capacitor to absorb any generated back electro-motive force (EMF).

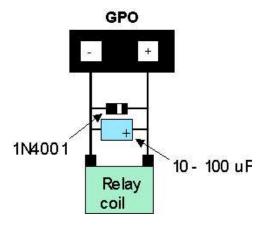


Figure 17: Clamping a Relay

3 Displaying Text

This chapter describes the various text display commands in detail. Before issuing commands to the VK162-12 please read sections 7.2 and 7.3.

3.1 General

Text is displayed on the LK16-12 using the built in 5x7 dot matrix font, in addition to up to 8 user defined characters.

3.2 The built in Character Font

The display includes a built in 5x7 dot matrix font with the full range of ASCII characters plus a variety of extended characters.

				D7 D6	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
				D5 D4	0 0	0	1 0	1	0 0	0	1 0	1	0	0	1 0	1	0	0	1	1
D3	D2	D1	DO		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0	0	0	0	0		I		0	a	P	`	F	Ä	Æ		-	9	Ξ	O.	p
0	0	0	1	1		I	!	1	A	Q	ā	q	A	æ		7	Ŧ	4	ij	q
0	0	1	0	2			ii	2	В	R	Ь	۳	Å	£	г	4	ij	×	E	8
0	0	1	1	3			#	3		S	c	8	á	R		ņ	Ŧ	E	Ξ,	60
0	1	0	0	4			\$	4	D	T	d	ŧ.	à	-	ς.	I	ŀ	to	.4	Ω
0	1	0	1	5			Ž,	5	E	U	⊜	u	E		п	7	÷	1	Œ	ü
0	1	1	0	6			8.	6		Ų	ŧ.	Ų	Ö	#	Ę	Ħ	=	3	ρ	Ξ
0	1	1	1	7		111111111111111111111111111111111111111	7	7	G	W	g	W	ö	0	7	#	Œ,	ā	g	H
1	0	0	0	8		1	(8	Н	X	h	×	Ø	1	4	9	7.	IJ	ŗ	X
1	0	0	1	9		,þ)	9	I	Y	i	¥	ø	Ç	÷	Ť	J	ıĮ,	-i	H
1	0	1	0	A		;; <u></u>	:4:	22	J	Z	j	Z	ij	4	I	J	'n		ij	Ŧ
1	0	1	1	В		11		#	K	L	k	{	ü	<	24"	#			×	F
1	1	0	0	c		.iii.	,	<	L	¥	1	T	N	2	†2	5,	J	7	₫.	PH
1	1	0	1	D		þ.		==	M	1	m	>	Ţ.	4	_	Z	4		4	÷
1	1	1	0	E		4		þ	Ы	4	m	÷	ňψ	1	=	12	:†:	*	F	
1	1	1	1	F	Г	.di.	1	?	0		O	÷	8	.ļ.	11.1	ij	Ţ	E3	ö	

Figure 18: Character Set

In addition to the built in characters, users may define up to 8 special characters (which, once defined, occupy positions 0x00 to 0x07 in the above chart). The display does not have provision to download other fonts.

3.3 Writing Text to the Display

When the display receives a character, it displays that character at the position currently defined. The next character sent to the module then advances to the following position on the display. Characters are drawn using the built in font, and only characters defined in the font are actually displayed. Characters that are not defined by the built in font print as a space. An example of this would be that the cursor is advanced for the next character.

The position where text is to be inserted is a character location stored in the display's volatile memory and maintained internally by the display's firmware. This position is manipulated by the commands shown

in the following section.

3.4 Text Commands

In this section commands are identified by their names and decimal values.

Some commands, marked with an "R", may be 'remembered' to set new defaults that will be in effect each time the unit is powered on.

3.4.1 Auto Line Wrap On (254 67) (R)

Enables automatic line wrapping. Note that this is not 'word wrapping' and wraps may occur in the middle of a word.

3.4.2 Auto Line Wrap Off (254 68) (R)

Disables automatic line wrapping. Characters beyond the end of a line will be lost.

3.4.3 Auto Scroll On (254 81) (R)

When auto scrolling is on, it causes the display to shift the entire display's contents up to make room for a new line of text when the text reaches the scroll position (the bottom right character position).

3.4.4 Auto Scroll Off (254 82) (R)

When auto scrolling is disabled, text will wrap to the top left corner of the display area. Existing text in the display area is not erased before new text is placed. A series of 'spaces' followed by a "Cursor home" command may be used to erase the top line of text.

3.4.5 Set Cursor Position (254 71 [column] [row])

This command sets the cursor position (text insertion point) to the [column] and [row] specified. Columns have values from 1 to 20 (0x01 to 0x14) and rows have values of 1 and 2 (0x01 and 0x02).

3.4.6 Send Cursor Home (254 72)

This command moves the cursor position (text insertion point) to the top left of the display area.

3.4.7 Turn on Underline Cursor (254 74) (R)

Turns on the underline cursor. The cursor shows the current text insertion point. Both underline and blinking cursors may be turned on or off independently. The cursor is off by default.

3.4.8 Turn off Underline Cursor (254 75) (R)

Turns off the underline cursor. Does not affect the blinking block cursor.

3.4.9 Turn on Block (blinking) Cursor (254 83) (R)

Turns on the blinking block cursor. The cursor shows the current text insertion point. Both blinking and underline cursors may be turned on or off independently. The cursor is off by default.

3.4.10 Turn Off Block (blinking) Cursor (254 84) (R)

Turns off the blinking block cursor. Does not affect the underline cursor.

3.4.11 Cursor Left (254 76)

Moves the cursor one position to the left but does not erase any character that may be in that position. Note that this command moves the text insertion point even if the cursor is turned off.

NOTE A 'destructive backspace', which erases the character to the left of the original position, may be done by issuing the following sequence: cursor left, space, cursor left.

3.4.12 Cursor Right (254 77)

Moves the cursor one position to the right but does not erase any character that may be in that position. Note that this command moves the text insertion point even if the cursor is turned off.

4 Keypad Interface

This chapter describes the keypad interface and associated commands in detail.

4.1 General

The display keypad interface processes the keypad row / column matrix into a serial (RS-232 or I^2C) data byte stream. Aside from this processing, the keypad has no effect on the display. To send keystrokes to the display, they must be routed through the controller. Whenever a columns and a row pin are shorted together, a keystroke will be generated and either held in the buffer (I^2C) or send over the serial line to the host (RS-232). The keypad shares the same pins as the seven GPOs on the display and only one or the other can be used at one time.

4.2 Connections

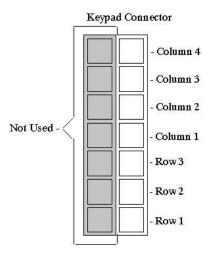


Figure 19: Keypad Connector

The connector is not 'keyed' so the keypad will probably plug in either of two ways. The display will not be damaged by reversing the connector, but the keypad will generate a different ASCII character mapping for each position. If the connector has fewer than 7 pins it should be centered on the display connector, starting with Row 3 and Column 1 and going out. Any matrix style keypad will work with the display, as well as momentary switches.

The diagram shows the logical layout (row 1, column 1 in upper left). The connector for the keypad is a 10 pin 0.1" spacing male header. Pins 1 through 5 are columns and pins 6 through 10 are rows. The keypad is scanned whenever a key is pressed: there is no continuous key scan. This means that key presses are dealt with immediately without any appreciable latency. This also prevents electrical noise which is often caused by continuous key scans.

NOTE The keypads may be laid out in a different pattern. If this is the case, the user will need to interpret the key codes differently.

Table 6: Keypad Layout

Columns

		1	2	3	4
Rows	1	'A' 41 Hex	'F' 46 Hex	'K' 4A Hex	'P' 50 Hex
Kows	2	'B' 42 Hex	'G' 47 Hex	'L' 4B Hex	'Q' 51 Hex
	3	'C' 43 Hex	'H' 48 Hex	'M' 4C Hex	'R' 52 Hex

NOTE The keypad connector must be wired with columns on one side and rows on the other side of the center of the connector. In situations where the keypad isn't wired this way an adapter will need to be made, or the user should rewire the connector to meet this requirement.

4.3 I²C Interface

The keypad is read by I²C master read. In short, this means that a read of the module will always return the first unread key press. A read is initiated by writing to the module with its base address plus 1, then clocking the module's return byte after the module releases the SDA line. Much more detail on this basic I²C function can be found in the I²C specification by Phillips. A good reference is also available at;

http://www.ping.be/~ping0751/i2cfaq/i2cindex.htm

The module contains a ten key press buffer so that it can be polled for key presses at an infrequent rate (every 500 to 1000 mS is typical). All returned key presses indicate the presence or absence of additional logged key presses by the most significant bit (MSB - bit 7). If the user has pressed two keys since the last poll of the keypad interface, the first read will return the key code with bit 7 set and the second read will return the key code with bit 7 clear. The application must take into account this bit to keep up with user key presses. If there are no keypresses detected, the module will return zero (0x00).

4.4 RS-232 Interface

By default on any press of a key, the module will immediately send out the key code at the selected baud rate. This behavior can be modified using commands found in the next section.

4.5 Keypad Commands

Some commands, marked with an "R", may be 'remembered' to set new defaults that will be in effect each time the unit is powered on.

4.5.1 Auto Repeat Mode On (254 126 [mode]) (R)

[mode] = 0x00 gives "Resend Key Code" mode [mode] = 0x01 gives "Key down / key up" code mode. Two modes of auto repeat are available and are set via the same command.

- 1. **Resend Key Code:** This mode is similar to the action of a keyboard on a PC. In this mode, when a key is held down, the key code is transmitted immediately followed by a 1/2 second delay. After this delay, key codes will be sent via the RS-232 interface at a rate of about 5 codes per second. This mode has no effect if polling or if using the I²C interface.
- 2. Key Down / Key Up codes: This mode may be used when the typematic parameters of the "Resend key code" mode are unacceptable or if the unit is being operated in polled mode. The host system detects the press of a key and simulates an auto repeat inside the host system until the key release is detected.

In this mode, when a key is held down, the key code is transmitted immediately and no other codes will be sent until the key is released. On the release of the key, the key release code transmitted will be a value equal to the key down code plus 20 hex. For example, the key code associated with key 'P' (0x50) is pressed, the release code is 'p' (0x70).

In RS-232 polled mode or via the I²C interface, the "Key down / key up" codes are used. However, the user should be careful of timing details. If the poll rate is slower than the simulated auto - repeat it is possible that polling for a key up code will be delayed long enough for an unwanted key repeat to be generated.

4.5.2 Auto Repeat Mode Off (254 96) (R)

This command turns auto repeat mode off.

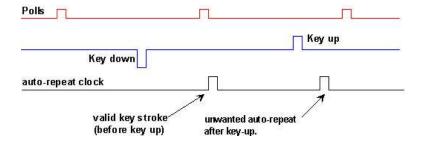


Figure 20: Poll Timing

4.5.3 Auto Transmit Keypresses On (254 65) (R)

In this mode, all keypresses are sent immediately to the host system without the use of the poll keypad command. This is the default mode on power up.

4.5.4 Auto Transmit Keypresses Off (254 79) (R)

In this mode, up to 10 keypresses are buffered until the unit is polled by the host system via the poll keypad command. Issuing this command places the unit in polled mode.

4.5.5 Clear Key Buffer (254 69)

This command clears any unread keypresses. In a menuing application, if the user presses a key which changes the menu context, any following key presses may be inaccurate and can be cleared out of the buffer between menu changes to prevent jumping around the menu tree. It may also be used to, in effect, reset the keypad in case the host application resets for whatever reason.

4.5.6 Poll Keypad (254 38)

This command returns any unbuffered keypresses via the RS-232 interface. The host system must be set up to receive the key codes. When the display receives this command it will immediately return any unbuffered keypresses which may have not been read already. If there is more than one keypress buffered, then the high order bit (MSB) of this returned keycode will be set (1). If this is the only buffered keypress, then the MSB will be reset (0). If there are no buffered keypresses, then the returned code will be 0x00. Please note to make use of this command, the "Auto transmit keypress" mode should be off.

4.5.7 Set Debounce Time (254 85 [time]) (R)

[time] is in increments of 6.554 milliseconds.

This command sets the time between key press and key read. All key types with the exception of latched piezo switches will 'bounce' for a varying time, depending on their physical characteristics. The default debounce time for the module is about 52 mS, which is adequate for most membrane keypads.

5 Bar Graphs and Special Characters

The display includes the ability to draw bar graphs (either horizontal or vertical) and allows users to define up to eight special characters. Eight characters (ASCII values 0x00 to 0x07) are set aside for use with bar graphs, user defined characters, and big numbers. Since the same 8 characters are used for each function, the functions may not be used simultaneously. The characters may be defined or redefined at any time by issuing the commands shown in this section. Once defined, they may be used either by means of the bar graph commands, or by simply issuing one of the ASCII values 0x00 to 0x07, which is not prefixed by the command byte, 254.

5.1 Command List

This chapter describes various graphic commands.

5.1.1 Initialize Wide Vertical Bar Graph (254 118)

This command defines the 8 special / user characters to be blocks suitable for use in drawing wide (5 pixel) vertical bar graphs. Any previously existing definitions will be lost. Once this command has been issued, any number of vertical bar graphs may be drawn unless the characters are redefined by another command.

5.1.2 Initialize Narrow Vertical Bar Graph (154 115)

This command defines the 8 special / user characters to be blocks suitable for use in drawing narrow (2 pixel) vertical bar graphs. Any previously existing definitions will be lost. Once this command has been issued, any number of vertical bar graphs may be drawn unless the characters are redefined by another command.

5.1.3 Draw Vertical Bar Graph (254 61 [column] [height])

Draws a vertical bar graph in [column] having a height of [height] pixels. The height may range from 0 to 20 (0x00 to 0x14) pixels. The necessary characters must first be initialized by either of the commands shown in section 5.1.1 or 5.1.2, which will determine the width of the graph drawn. Graph may be erased by drawing a bar graph of height = 0 in the same column.

5.1.4 Initialize Horizontal Bar Graph (254 104)

This command defines the 8 special / user characters to be blocks suitable for use in drawing horizontal bar graphs. Any previously existing definitions will be lost. Once this command has been issued, any number of horizontal bar graphs may be drawn unless the characters are redefined by another command.

5.1.5 Draw Horizontal Bar Graph (254 124 [column] [row] [dir] [length])

Draws a horizontal bar graph in [row] starting at [column] with a length of [length] pixels. [row] may have a value of 0x01 or 0x02, column may range from 0x01 to 0x14 and length may be from 0x00 to 0x64 (0 to 100) if the graph can extend the full width of the screen. Each column is 5 pixels wide (spaces between the columns don't count). [dir] specifies the direction: 0x00 goes from left to right, 0x01 goes from right to left.

5.1.6 Define Custom Character (254 78 [c] [8 bytes])

The dislay allows up to 8 user defined (custom) characters. These characters occupy the first 8 (0x00 to 0x07) places in the character set.

Custom characters occupy a 5x7 pixel matrix. Built in characters are 5x7: the bottom row of pixels is normally reserved for the underline cursor. The underline cursor should be turned off if the bottom row of pixels forms part of a custom character.

The characters are defined by issuing the command 25478 [c] followed by 8 bytes to define the character. [c] is the character number (0x00 to 0x07). The 8 bytes are mapped as shown below;

MSB LSB Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3 Data Byte 4 Data Byte 5 Data Byte 6

Table 7: 8 Byte Map

A "1" bit indicates an on (black) pixel, a "0" bit indicates an off (clear) pixel.

Once defined, a character is displayed simply by issuing a value (0x00 to 0x07) corresponding to the character number. The character will be laid out as follows;

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30
31	32	33	34	35
	Cui	rsor I	ine	

Table 8: Character Values

NOTE Custom characters will be erased if any of the "Initialize bar graph" commands are issued.

Example of a degree symbol:

txUart.sendByte(0xFE); //command prefix

```
txUart.sendByte('N'); //custom character command
txUart.sendByte(0x00); //custom character value 0-7
txUart.sendByte(12); //8 bytes to create
txUart.sendByte(18); //the custom character
txUart.sendByte(18);
txUart.sendByte(12);
txUart.sendByte(0);
txUart.sendByte(0);
txUart.sendByte(0);
txUart.sendByte(0);
txUart.sendByte(0);
```

6 Miscellaneous Commands

The commands listed in this chapter don't readily fit in any of the other categories, or are used in more than one category.

Some commands, marked with an "R", may be 'remembered' to set new defaults that will be in effect each time the unit is powered on.

6.1 Command List

This chapter deals with command functions.

6.1.1 Remember

This command allows a number of settings, such as cursor state, backlight, etc. to automatically be stored to non-volatile memory so they become new defaults. The command should only be used when required for two reasons;

- 1. Writing to non-volatile memory is time consuming and slows down the operation of the display.
- 2. Non-volatile memory has a 'write limit' and may only be changed approximately 100,000 times.

Commands which may be used with the 'remember' function are marked with an "R" in the "Default" column in the command tables. The example shows the procedure to set "Auto scroll ON" as the default condition. Commands are shown in both decimal and hex in this example;

Table 9: Command Example

Decimal	Hex	Function
254 147 1	FE 93 01	Turn on "remember" function
254 81	FE 51	Turn on auto scroll. Since "remember" is ON, this setting will be saved in non-volatile memory
254 147 0	FE 93 00	Turn off "remember" function

Any number of commands may be entered between the 'remember ON' and 'remember OFF' commands, and all settings will be memorized.

6.1.2 Clear Display (254 88)

This command clears the display and resets the text insertion point to the top left of the screen.

6.1.3 Display On (254 66 [minutes]) (R)

This command turns on the display on for a time of [minutes] minutes. If [minutes] is zero (0), the display will remain on indefinitely.

NOTE The factory default for display is on.

6.1.4 Display Off (254 70)

This command turns the display off.

6.1.5 Load Startup Screen (254 64 [32 characters])

This command sets and memorizes the startup screen which will appear each time the display is turned on. By default the screen shows;

Table 10: Default Screen

Matrix Orbital

VK162-12

The 40 characters define the two 20 character rows of the screen.

Table 11: Default Screen

Character1	Character16
Character21	Character 32

6.1.6 Set brightness (254 89 [brightness])

This command sets the display brightness to [brightness], where [brightness] is a value between 0x00 and 0x03 (between 0 and 3) according to the Table below.

Table 12: Brightness Settings

Hex Value	Brightness
0x00	25%
0x01	50%
0x02	75%
0x03	100%

6.1.7 General Purpose Output Off (254 86 [gpo #])

This command turns OFF any of the general purpose outputs. [gpo #] is 1 to 7.

6.1.8 General Purpose Output On (254 87 [gpo #])

This command turns ON any of the general purpose outputs. [gpo #] is 1 to 7. ON means that the output is pulled low (ground via 240ohms).

6.1.9 Set I²C Address 254 51 [address])

This command sets the I^2C write address of the module. This value must be an even number and the read address is one higher. For example if the I^2C write address is set to 0x50, then the read address is 0x51. The change in address is immediate. This address is 0x50 by default, and is reset temporarily back to that value when the 'manual over-ride' jumper is used on power up.

6.1.10 Read Module Type (254 55)

This command will return, over the RS-232 interface, the model type value of the module. Values for various modules at the time of this publication are as follows;

LCD0821 - 0x01	LCD2021 - 0x03	LCD2041 - 0x05
LCD4021 - 0x06	LCD4041 - 0x07	LK202-25 - 0x08
LK204-25 - 0x09	LK404-55 - 0x0A	VFD2021 - 0x0B
VFD2041 - 0x0C	VFD4021 - 0x0D	VK202-25 - 0x0E
VK204-25 - 0x0F	GLC12232 - 0x10	GLC24064 - 0x13
GLK24064-25 - 0x15	GLK12232-25 - 0x22	LK404-AT - 0x31
VK162-12 - 0x32	LK402-12 - 0x33	LK162-12 - 0x34

Table 13: Module Values

6.1.11 Set RS-232 Port Speed (254 57 [speed])

This command sets the RS-232 port to the specified [speed]. The change takes place immediately. [speed] is a single byte specifying the desired port speed. Valid speeds are shown in the table below. The speed can be manually reset to 19,200 baud in the event of an error during transmission (including transmitting a value not listed below) by setting the 'manual over-ride' jumper on the module during power. This command is ignored until this jumper is removed again.

Table 14: Speed Settings

Speed Value	Speed
FF Hex	1200 Baud
81 Hex	2400 Baud
20 Hex	9600 Baud
0F Hex	19 200 Baud

6.1.12 Read Version Number 254 54)

Modules may be delivered with the serial number blank. In this case the user may set the desired 2 byte serial number using this **one time only** command. Upon the execution of this command, the module will echo these two bytes back over the RS-232 interface. The serial number may be set only once. Any future attempt to execute this command will result in no change and the module will return to the originally set serial number.

6.1.13 Read Serial Number (254 53)

This command will return, over the RS-232 interface, the two-byte serial number of the module as it was previously stored.

6.1.14 Read Version Number (254 54)

This command will return the firmware version number of the display. The firmware version number is a 1-byte hex value.

6.2 Flow Control

The display has built in flow control which may be useful when long strings of text are downloaded to the display. Flow control is enabled or disabled by two commands. If flow control is enabled, the display will return an "almost full" message (0xFE) to the controller when its internal buffer fills to a defined level, and an "almost empty" message (0xFF) when the buffer contents drop to a defined level.

6.2.1 Enter Flow Control Mode (254 58 [full][empty])

NOTE Flow control applies only to the RS-232 interface. It is not available for I²C.

This command enables flow control. When the buffer fills so that only [full] bytes are available the display will return an "almost full" message (0xFE) to the controller. When the buffer empties so that only [empty] bytes remain the dislay will return an "almost empty" message (0xFF) to the controller.

The display will return the "almost full" message for every byte sent to the display until the used buffer space once more drops below the [full] level.

Whether the user is in 'flow control mode' or not, the module will ignore display or command bytes which would over-run the buffer. While in 'flow control mode' the unit will return 0xFE when buffer is almost full even though it may have already thrown rejected data away. The buffer size for the display is 80 bytes.

When using this command in an application, selection of the value for the buffer almost full should be considered very carefully. This is a critical aspect of using this command to it's full potential. When using a host system or PC which contains a FIFO, the user should set the value of [full] equal to or greater than the

size of the FIFO. The reason for this is that the FIFO may be full when the host system receives 0xFE. In the case of 16550 UART the size at its maximum is 16, therefore the value of should be set to 16 or greater.

6.2.2 Exit Flow Control Mode (254 59)

This command turns off flow control. Bytes may overflow the buffer without warning.

6.2.3 GPO or Keypad Mode (254 126 [mode])

The display shares GPO and keypad pins, you can use one of the other but not both at the same time. To select either general purpose outputs or the keypad interface on the general purpose output / keypad connector, send a command prefix followed by the character '%' followed by , where is either 0 or 1 (8 bit binary).

0 = Keypad Interface Mode

1 = General Purpose Output Mode.

7 Appendix: Command Summary

7.1 General

The operation of the display is controlled by a simple and consistent command set. Commands control;

- Text display
- Graphics display
- Keypad interface
- Miscellaneous operating parameters

This chapter includes summary tables of all commands.

7.2 Issuing Commands

Commands are issued to the display by the controller. In a test setup, commands can be issued to the display by means of a BASIC program, using the chr\$() function. In the tables below, we've shown commands in hex, ASCII and decimal form. All commands begin with the prefix character 0xFE (254 decimal). These commands are issued on the serial communications link (I²C or RS-232) at the currently defined baud rate.

For example (using BASIC in a test setup), the user could issue the command to clear the screen on the display by including the line;

PRINT#1, chr\$ (254); chr\$ (88)

in the BASIC program.

Or, with C the user could (using Zcomm serial library)

```
ZComm1->WriteCommByte(0xfe);
ZComm1->WriteCommByte('X');
```

7.3 On Numbers

Like all computerized devices, the display operates with commands and values in the form of binary numbers. These binary numbers are arranged in 8 digit (i.e., 8 bit) groups called bytes. The decimal value of a byte may have any value from 0 to 255.

Bytes are usually specified in either decimal or hexadecimal (base 16) form for convenience since binary numbers are confusing to deal with directly. Hexadecimal (hex) numbers are particularly convenient because exactly two hexadecimal digits make up one byte, each hex digit representing 4 binary digits (4 bits) as shown here;

Binary	Hex	Decimal	Binary	Hex	Decimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	A	10
0011	3	3	1011	В	11
0100	4	4	1100	С	12
0101	5	5	1101	D	13
0110	6	6	1110	Е	14
0111	7	7	1111	F	15

Table 15: Hex Value Table

Based on the table, the byte 01001011 can be represented in hex as 4B, which is usually written as any of 4Bh, 4BH, 4B hex or 0x4B.

The numbers can also be expressed in decimal form if preferred.

7.3.1 ASCII Characters

Since computers deal internally with numbers only, but externally with both letters and numbers, several schemes were developed to 'map' written characters to numeric values. One such scheme has become universal, the American Standard Code for Information Interchange, or ASCII. ASCII tables are readily available from a number of sources. A few examples will do here;

Table 16: Example of an ASCII Table

The letter	A	has a value of	65 decimal or	41 hex
The letter	a	has a value of	97 decimal or	61 hex
The number	0	has a value of	48 decimal or	30 hex
The number	9	has a value of	57 decimal or	39 hex

This gives rise to the possibility of confusion when parameters are being set on the display For example, the GPO ON and OFF commands use a number to indicate which GPO is being controlled. We're told that acceptable values are 0 to 6. All such parameters must use numeric values (i.e., the actual byte values). If we send the ASCII number 0 by mistake it will actually give the value 48 decimal (30 hex) to the parameter, which is wrong.

In the tables given in the following sections ASCII characters are shown as 'A', with single quotes.

7.4 Text Commands

Syntax in the tables below is given in hex, decimal and decimal with ASCII, in that order, one per line.

NOTE The letter "R" in the "Default" column indicates that this state can be saved to nonvolatile memory with the "Remember" command.

Table 17: Text Commands

Command	Syntax	Default	Notes
Auto line wrap on	FE 43 254 67 254 'C'	On R	Enables line wrapping (not word wrap).
Auto line wrap off	FE 44 254 68 254 'D'	On R	Disables line wrapping.
Auto scroll on	FE 51 254 81 254 'Q'	Off R	Enables scroll at bottom of screen. Text will push display up one line to make room for new line.
Auto scroll off	FE 52 254 82 254 'R'	Off R	Disables auto scroll. Text will wrap to top left and overwrite existing text.

Command	Syntax	Default	Notes
Set cursor position	FE 47 [col] [row] 254 71	N/A	Moves cursor
	[col] [row]		to the specified
	254 'G' [col] [row]		column and row.
			The cursor marks
			the text insertion
			point in this and
			all commands.
Send cursor home	FE 48		This command
	254 72		moves the cursor
	254 'H'		to the top left of
			the display area.
Underline cursor on	FE 4A	Off R	Turns on the un-
	254 74		derline cursor.
	254 'J'		
Underline cursor off	FE 4B	R	Turns off the un-
	254 75		derline cursor.
	254 'K'		
Block cursor on	FE 53	On R	Turns on the
	254 83		blinking block
	254 'S'		cursor.
Block cursor off	FE 54	R	Turns off the
	254 84		blinking block
	254 'T'		cursor.
Cursor left	FE 4C		Moves the cur-
	254 76		sor one position
	254 'L'		to the left. If the
			cursor is already
			at the beginning
			of a line it will
			move to the end
			of the other line.
Cursor right	FE 4D		Moves the cur-
	254 77		sor one position
	254 'M'		to the right. If the
			cursor is already
			at the end of a line
			it will move to the
			beginning of the
			other line.

7.5 Keypad Interface Commands

Table 19: Keypad Interface Commands

Command	Syntax	Default	Notes
Auto repeat mode on	FE 7E [0x00l0x01] 254 126 [0l1] 254 '~' [0l1]	Off R	Applies to key- pad only.0x00 = 200 ms type- matic,0x01 = key down/key up codes sent.
Auto repeat mode off	FE 60 254 96 254 '''	Off R	Applies to keypad only.
Auto transmit key presses on	FE 41 254 65 254 'A'	On R	Sets auto transmit mode for keypad. Key presses are transmitted to host without polling.
Auto transmit key presses off	FE 4F 254 79 254 'O'	Off R	Up to 10 key presses buffered until polled.
Clear key buffer	FE 45 2 54 69 254 'E'	N/A	Clear unread key presses.
Poll keypad	FE 26 254 38 254 '&'	N/A	Returns buffered key presses to application. Returns 0x00 if no key presses. High order bit set unless this is the last/only key press.
Set debounce time	FE 55 [time] 254 85 [time] 254 'U' [time]	52 ms R	Resolution: 1 = 0.6554 ms [time] is a numeric multiplier.

7.6 Bar Graphs and Special Characters

The commands in this section are used to define and display bar graphs and special characters.

Table 21: Bar Graphs and Special Characters

Command	Syntax	Notes
Initialize thick vertical bar	FE 76	Initializes the user character set to
graph	254 118	make wide vertical bar graphs.
	254 'v'	
Initialize thin vertical bar	FE 73	Initializes the user character set to
graph	254 115	make narrow vertical bar graphs.
	254 's'	
Initialize horizontal bar	FE 68	Initializes the user character set to
graph	254 104	make horizontal bar graphs.
	254 'h'	
Define custom character	FE 4E [c][8 bytes]	Defines one of 8 custom "user" char-
	254 78 [c][8 bytes]	acters. Character number is [c] be-
	254 'N' [c][8 bytes]	tween 0x00 and 0x07.
Draw vertical bar graph	FE 3D [col][length]	Draws a vertical bar graph at column
	254 61 [col][length]	[col] of length [length]. Length is
	254 '=' [col][length]	measured in pixels (0x00 to 0x14).
		User must first use the 'v' or 's'
		command to initialize characters.
Draw horizontal bar graph	FE 7C [c][r][d][length]	Draws a horizontal bar graph start-
	254 124 [c][r][d][length]	ing at column [c] on row [r] with di-
	254 'l' [c][r][d][length]	rection [d] (0 is right, 1 is left) of
		length [length]. Length is measured
		in pixels (0x00 to 0x64 if starting in
		column 1). User must first use the
		'h' command to initialize characters.

7.7 Miscellaneous Commands

Table 23: Miscellaneous Commands

Command	Syntax	Default	Notes

Command	Syntax	Default	Notes
Remember	FE 93 [011]	off	Turns the "re-
	254 147		member" function
			on [1] or off [0].
Clear Display	FE 58	N/A	Clears screen of
	254 88		text and graphics,
	254 'X'		places text cursor
			at top left.
Load Startup Screen	FE 40 [32 char]	Matrix Orbital	Loads new startup
	254 64 [32 char]	VK162-12	screen (32 char-
	254 '@' [32 char]		acters). Screen
			is remembered for
			subsequent power
			ups.
GPO or Keypad Interface	FE 25 [mode]	0	To select either
Mode	254 37 [mode]		GPO or Keypad
	254 % [mode]		mode.0 = Keypad
			Interface Mode1
	PE 76 1 113	0.00	= GPO mode.
General Purpose Output	FE 56 [gpo #]	Off	Turns a general
Off	254 86 [gpo #]		purpose output
	254 'V' [gpo #]		OFF. [gpo #] may
Cananal Damasa Outsut	EE 57 [#]	Off	be from 1 to 6.
General Purpose Output On	FE 57 [gpo #]	Oll	Turns a general
On	254 87 [gpo #] 254 'W' [gpo #]		purpose output ON. [gpo #] may
	234 W [gpo #]		be from 1 to 6.
Set I ² C Address	FE 33 [address]	0x50	Value is write ad-
Set I & Address	254 51 [address]	OASO	dress and must be
	254 '3' [address]		even, read address
	23 1 3 [uddress]		is 1 higher.
Read Module Type	FE 37	See Table	Reads the module
read Would Type	254 55	See Tuble	type.
	254 '7'		JF -
Set RS-232 Port Speed	FE 39 [speed]	19,200 Baud	Sets RS-232
	254 57 [speed]	.,	speed.
	254 '9' [speed]		ī
Set Serial Number	FE 34 [byte1][byte2]		This is a one-
	254 52 [byte1][byte2]		time-use com-
	254 '4' [byte1][byte2]		mand which
			works only on
			units without
			factory set serial
			numbers.

Command	Syntax	Default	Notes
Read Serial Number	FE 35		Reads the two
	254 53		byte serial num-
	254 '5'		ber of the module.
Read Version Number	FE 36		Reads the
	254 54		firmware ver-
	254 '6'		sion number of
			the module.
Enter Flow Control Mode	FE 3A [full] [empty] 254 58 [full] [empty] 254 ':' [full] [empty]	Off	Sets "full" and "empty" marks for the 80 byte display buffer. When buffer reaches [full] display will return 0xFE to host. When buffer reaches [empty] display will return 0xFF.
Exit Flow Control Mode	FE 3B		Turns off flow
	254 59		control.
	254 ';'		

8 Appendix: Specifications and Options

8.1 Specifications

Table 25: Environmental Specifications

	Standard Temperature	Extended Temperature
Operating Temperature	-20° C to $+50^{\circ}$ C	-40°C to +85°C
Storage Temperature	-30°C to +70°C	-50°C to +85°C
Operating Relative Humidity	90% max non-condensing	90% max non-condensing

Table 26: Electrical Specifications

Supply Voltage	4.75 - 5.25 Vdc (optional 7 - 15 Vdc)
Supply Current (all pixels off)	10 mA typical
Supply Current (all pixels on)	160 mA typical
Supply Current (power up)	220 mA typical

Table 27: Optical Characteristics

Number of Characters	32 (16 characters by 2 lines)
Matrix format	5 x 7 with underline
Display Area	51.36 x 11.4 mm XxY
Character Size	2.46 x 4.76 mm (XxY), not including underline
Character Pitch	3.26 mm
Line pitch	6.01 mm
Dot Size	0.38 x 0.56 mm (XxY)
Dot Pitch	0.52 x 0.70 mm (XxY)
Luminance	350 cd/m ² (100fL) min.
Color of Illumination	Blue - Green



Figure 21: Physical Layout

8.2 Options

Table 28: Options Available on VK162-12

Extended Temperature	-E
Wide Voltage	-V

9 Appendix: Glossary

Table 29: Appendix: Glossary

ASCII	American Standard Code for Information Interchange.
	A 7 bit binary code representing the English alpha-
	bet, decimal numbers and common punctuation marks.
	Also includes control characters such as carriage re-
	turn or end of text. An 8 bit superset of the standard
	ASCII codes is often used today to include foreign
	characters and other symbols. These supersets are of-
	ten called extended ASCII character sets.
Backlight	A backlit display is illuminated from behind to provide
	night-time and improved daytime readability.
Binary Number	The (data and signaling) bit transmission rate of an RS-
	232 device.
Bit	A number written using binary notation which only
	uses zeros and ones.
Bitmap	A representation, consisting of rows and columns of
	dots, of a graphics image in computer memory. The
	value of each dot (whether it is filled in or not) is stored
	in one or more bits of data.
Byte	A grouping of eight binary bits.
CCFL	Cold Cathode Fluorescent Lamp. A high brightness
	backlighting source consists of a fluorescent tube pow-
	ered by a high voltage A.C. source.
Configuration	The way a system is set up, or the assortment of com-
	ponents that make up the system. Configuration can
	refer to either hardware or software, or the combina-
	tion of both.
Contrast	The ratio of luminance between the light state of the
	display to the dark state of the display.

Controller	The micro-controller or PC used to control the Matrix
	Orbital display unit.
DB-9	The designation of a connector used in the RS-232 in-
	terface: 9 pin connector.
Firmware	Software (programs or data) that has been written onto
	read-only memory (ROM). Firmware is a combina-
	tion of software and hardware. ROMs, PROMs and
	EPROMs and flash EEPROMs that have data or pro-
	grams recorded on them are firmware.
Font	A design for a set of characters. A font is the combina-
	tion of typeface and other qualities, such as size, pitch,
	and spacing.
Font Metric	A definition of where font is to be placed, such as mar-
	gins and spacing between characters and lines.
Hexadecimal	Refers to the base-16 number system, which consists
	of 16 unique symbols: the numbers 0 to 9 and the let-
	ters A to F. For example, the decimal number 15 is
	represented as F in the hexadecimal numbering sys-
	tem. The hexadecimal system is useful because it can
	represent every byte (8 bits) as two consecutive hex-
	adecimal digits. It is easier for humans to read hex-
	adecimal numbers than binary numbers.
	C1
I^2C	Short for Inter-IC, a type of bus designed by Phillips
I ² C	Semiconductors in the early 1980s, which is used to
I ² C	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multi-
I ² C	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be
I ² C	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a
	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a master by initiating a data transfer.
Interface	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a master by initiating a data transfer. A means by which two systems interact.
Interface LCD	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a master by initiating a data transfer. A means by which two systems interact. Liquid Crystal Display.
Interface LCD Module Type Value	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a master by initiating a data transfer. A means by which two systems interact. Liquid Crystal Display. This refers to the model number of the module.
Interface LCD	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a master by initiating a data transfer. A means by which two systems interact. Liquid Crystal Display. This refers to the model number of the module. The smallest individually controllable element of a
Interface LCD Module Type Value Pixel	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a master by initiating a data transfer. A means by which two systems interact. Liquid Crystal Display. This refers to the model number of the module. The smallest individually controllable element of a display.
Interface LCD Module Type Value	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a master by initiating a data transfer. A means by which two systems interact. Liquid Crystal Display. This refers to the model number of the module. The smallest individually controllable element of a display. Pre-determined fonts which can be downloaded into
Interface LCD Module Type Value Pixel Pre-Generated Fonts	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a master by initiating a data transfer. A means by which two systems interact. Liquid Crystal Display. This refers to the model number of the module. The smallest individually controllable element of a display. Pre-determined fonts which can be downloaded into graphic liquid crystal displays.
Interface LCD Module Type Value Pixel	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a master by initiating a data transfer. A means by which two systems interact. Liquid Crystal Display. This refers to the model number of the module. The smallest individually controllable element of a display. Pre-determined fonts which can be downloaded into graphic liquid crystal displays. A low-level object or operation from which higher-
Interface LCD Module Type Value Pixel Pre-Generated Fonts	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a master by initiating a data transfer. A means by which two systems interact. Liquid Crystal Display. This refers to the model number of the module. The smallest individually controllable element of a display. Pre-determined fonts which can be downloaded into graphic liquid crystal displays. A low-level object or operation from which higher-level, more complex objects and operations can be
Interface LCD Module Type Value Pixel Pre-Generated Fonts	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a master by initiating a data transfer. A means by which two systems interact. Liquid Crystal Display. This refers to the model number of the module. The smallest individually controllable element of a display. Pre-determined fonts which can be downloaded into graphic liquid crystal displays. A low-level object or operation from which higher-level, more complex objects and operations can be constructed. In graphics, primitives are basic elements,
Interface LCD Module Type Value Pixel Pre-Generated Fonts	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a master by initiating a data transfer. A means by which two systems interact. Liquid Crystal Display. This refers to the model number of the module. The smallest individually controllable element of a display. Pre-determined fonts which can be downloaded into graphic liquid crystal displays. A low-level object or operation from which higher-level, more complex objects and operations can be constructed. In graphics, primitives are basic elements, such as lines, curves, and polygons, which you can
Interface LCD Module Type Value Pixel Pre-Generated Fonts Primitive	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a master by initiating a data transfer. A means by which two systems interact. Liquid Crystal Display. This refers to the model number of the module. The smallest individually controllable element of a display. Pre-determined fonts which can be downloaded into graphic liquid crystal displays. A low-level object or operation from which higher-level, more complex objects and operations can be constructed. In graphics, primitives are basic elements, such as lines, curves, and polygons, which you can combine to create more complex graphical images.
Interface LCD Module Type Value Pixel Pre-Generated Fonts	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a master by initiating a data transfer. A means by which two systems interact. Liquid Crystal Display. This refers to the model number of the module. The smallest individually controllable element of a display. Pre-determined fonts which can be downloaded into graphic liquid crystal displays. A low-level object or operation from which higher-level, more complex objects and operations can be constructed. In graphics, primitives are basic elements, such as lines, curves, and polygons, which you can combine to create more complex graphical images. Short for recommended standard-232C, a standard in-
Interface LCD Module Type Value Pixel Pre-Generated Fonts Primitive	Semiconductors in the early 1980s, which is used to connect integrated circuits (I ² Cs). I ² C is a multimaster bus, which means that multiple chips can be connected to the same bus and each one can act as a master by initiating a data transfer. A means by which two systems interact. Liquid Crystal Display. This refers to the model number of the module. The smallest individually controllable element of a display. Pre-determined fonts which can be downloaded into graphic liquid crystal displays. A low-level object or operation from which higher-level, more complex objects and operations can be constructed. In graphics, primitives are basic elements, such as lines, curves, and polygons, which you can combine to create more complex graphical images.

Scroll	To view consecutive lines of data on the display screen.
	The term scroll means that once the screen is full, each
	new line appears at the bottom edge of the screen and
	all other lines move up one position.
Serial Number	A number that is one of a series and is used for identi-
	fication of the module.
Serial Port	A port, or interface, that can be used for serial commu-
	nication, in which only 1 bit is transmitted at a time.
Version Number	This refers to the firmware revision number of the
	module.
Volatile Memory	Temporary memory. Once the power supply is turned
	off volatile memory is then erased.